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OUTLINE

1. BINARY BLACK HOLE EVOLUTIONS OF HELICAL K ILLING

VECTOR DATA.

Physical model.

Mesh refinement, Excision, Gauge conditions.

Results from evolutions of thin sandwich data.

2. EVOLUTIONS OF SINGLEBHS USING A MULTIPATCH CODE.

Recent implementation of interpolating patches.

BSSN evolution system with modified gauges.

Test cases: Kerr-schild, hydro, distorted BHs.



INITIAL DATA

We require a solution to the constraint equations representing a
pair of black holes at an instant in time.
Standard solution procedures:

Puncture data with Bowen-York angular momentum.
Conformal thin sandwich.

Solution should be astrophysically motivated: In “quasi-circular”
orbit.
Two commonly used methods for choosing orbital parameters:

Chose by searching for a minima in an effective potential.
Impose existence of a helical Killing vector (HKV) on the initial
data solution.

We have concentrated on two types of initial data:
Punctures with parameters along an effective potential sequence
developed by [Cook 1994] .
Thin sandwich data using the HKV condition, constructed by
[Grandclement-Gourgoulhon-Bonazolla 2002] – “Meudon” data.



THE AEI EVOLUTION CODE

Uses BSSN formulation of Einstein’s equations – 1st-order in
time, 2nd-order in space. [Nakamura-Kojima-Oohara 1987, Shibata-Nakamura

1995, Alcubierre et al. 2002]

Free evolution – constraints are not actively enforced during the
evolution.

Dynamic gauge conditions: Bona-Massó slicing, Γ-driver shift,
co-rotating frame.

Implemented on a cubical grid with timelike outer boundary faces.

Artificial radiative outer boundary condition – leads to loss of
accuracy and potential stability problems.

Straightforward finite differencing in space, typically 2nd or 4th
order.

Time integration via method of lines integrator (eg. iterated
Crank-Nicholson, Runge-Kutta).

Mesh refinement, concentrate resolution in strong field regions.



BLACK HOLE EVOLUTIONS OF “M EUDON” DATA

Gourgoulhon et al. (2002) generated
binary data by solving the
thin-sandwich equations under the
additional assumption of a helical
killing vector (HKV) within the slice.

Data imported onto finite difference
grid from Meudon spectral code.

Evolved using standard BSSN
evolution code and gauges.
[Koppitz PhD 2004]

Known inconsistencies in the inner
boundaries (due to the construction
procedure) are only apparent at
extremely high resolutions.
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BLACK HOLE EVOLUTIONS OF “M EUDON” DATA

Gourgoulhon et al. (2002) generated
binary data by solving the
thin-sandwich equations under the
additional assumption of a helical
killing vector (HKV) within the slice.

Data imported onto finite difference
grid from Meudon spectral code.

Evolved using standard BSSN
evolution code and gauges.
[Koppitz PhD 2004]

Known inconsistencies in the inner
boundaries (due to the construction
procedure) are only apparent at
extremely high resolutions.

Event horizon
evolution during
BBH inspiral
– using finder
by Diener
(2003).



BLACK HOLE EVOLUTIONS 2. “M EUDON” DATA



COORDINATE CONDITIONS

We have found that dynamical gauge conditions are crucial to
long term black hole evolutions.

LAPSE CONDITION:

Bona-Massó family of slicings [Bona et al. 1994] :

∂tα = −α2f (α)(K − K0)

Typically choose “1+log” variant: f (α) = 2/α

Singularity avoiding, not prone to gauge shocks.
Prone to “slice stretching”. [Reimann et al. 2003, 2004]

SHIFT CONDITION:

Hypberbolic “Γ̃-driver” shift [Alcubierre et al. 2002] :

∂tβ
i = FBi ,

∂tBi = ∂t Γ̃
i − ηBi

Parameters F (x), η(x) used to tune the shift evolution.



COORDINATE CONDITIONS

We have found that dynamical gauge conditions are crucial to
long term black hole evolutions.

CO-ROTATING COORDINATES

Initial data for the shift vector incorporates a rotational
component to slow the motion of BH horizons.

The horizon location is monitored during evolution.

The shift evolution is periodically adjusted to keep the horizons
in place.

The correction is applied as the solution of a damped harmonic
oscillator:

T 2p̈ + 2T ṗ + p = 0 with p = r − r0

β̇a → β̇a + F (x)p̈a.



EXCISION

It has become conventional to treat the
singularity at the centre of a BH by cutting
it from the evolution domain.

This is an inflow boundary → in principle
not technically difficult to apply a BC if you
know the characteristic structure of your
evolution system.

Our usual technique is a simple 1st-
order extrapolation of the update terms of
the evolution variables – “simple excision”
[Alcubierre-Brügmann 2001] .

On a cartesian grid, it is not possible to
excise on a smooth surface. However, sta-
ble finite differencing is difficult in the pres-
ence of corners and edges.

Horizon oscillations.

Asymptotically extracted waveforms.



EXCISION

We have evolved distorted puncture BHs,
and head-on collisions, both with and
without excision and extracted the wave-
forms at a large radius.
[Alcubierre et al. (2004)]

Even in the near zone, eg. at the horizon,
physical differences in the spacetimes are
small, and decrease with resolution.

However, growth of error on the irregu-
lar inner boundary motivates smooth inner
boundaries via multipatch.

Horizon oscillations.

Asymptotically extracted waveforms.



MULTIPATCH METHODS FOR BLACK HOLE SPACETIMES

We would like a smooth inner boundary for excision
cubic excision has causality problems at corners
it is difficult to develop stable finite difference schemes for
“Lego” excision, in particular with a shift
the z-axis for spherical coordinates is difficult to treat in 3D

We would like a smooth outer boundary
well-posed outer BC are easier to implement without
corners/edges
asymptotic compactification
matching to characteristic outer boundary code

A number of groups have developed multipatch
infrastructures for their codes – Meudon, Cornell-Caltech,
LSU, AEI.

Codes differ in choice of spatial discretisation (spectral,
finite differencing), and communication between patches.



6-PATCH “ INFLATED CUBE” COORDINATE SYSTEM

Thornburg has implemented a
multipatch infrastructure based on
interpolation between adjacent grids –
currently aimed at single hole
topologies.

Construction of angular coordinates:
Draw xyz grid lines on the faces of a
cube, then inflate the cube to a sphere
→ 6 angular patches around a sphere
at a given constant r .
Patches have ghost-zones which overlap – interpolation
from the neighbouring patch is used to fill ghost zone
values.
Angular coordinates are chosen so that adjacent patches
share angular coordinate perpendicular to their mutual
boundary→ only need 1D interpolations



GENERAL RELATIVITY

Write Einstein equations in a 3-covariant form

Each patch uses a local coordinate basis

Coordinate transform field variables when interpolating
between neighbouring patches

Non-tensorial quantities (eg. BSSN Γi require special
care).

Currently implementated within Cactus, using Carpet driver
for multipatch support, Whisky for hydrodynamics.



GAUGE CONDITIONS FOR MULTIPLE PATCHES

Commonly used Cartesian shift conditions for BSSN are
based on Γ̃i (Γ-freezing, Γ-drivers).

These are not covariant due to the nature of the Γi

variables.

Bona and Palenzuela have proposed a driver condition
based on the distortion tensor:

∂tβ
a = hBa,

∂tBa = 2(DiΣ
ia)− ηBa

where Σab is the distortion tensor.

This is a covariant condition whose principle part is similar
to Γ̃-driver.



TEST CASES1: SINGLE BH

Kerr-Schild evolution

Rotating (a = 0.6) BH in
Kerr-Schild coordinates

Thornburg 2004 demonstrated
long term stability and
convergence, evolved using
BSSN, static shift

Eventual problems due to outer
boundary, not excision or
interpatch BC.

Convergence of state vector after t = 100M,
t = 1000M (Thornburg 2004)



TEST CASES2: HYDRO

Shock propagation across boundaries
[Thornburg, Hawke].

Test case involving discontinuous initial
data.

Use high-resolution shock capturing.

Shocks are able to cross patch
boundaries.

Relativistic test-fluid accretion

Cactus+Carpet+Whisky.

Test problem of Font, Ibanez,
Papadopoulos gr-qc/9810344.

5th order HRSC spatial differencing.

4th order ENO interpatch interpolation.

∆θ = 4.5deg,∆r = 0.08m at BH, 1m at
outer bdy.

[Test cases by Ian Hawke]



DISTORTED BLACK IN FULL GR

BH in isotropic coordinates, distorted by a Brill wave

BSSN evolution

4th order in space differencing, RK4 time integrator, 5th
order lagrange interpolation between patches

Excision implemented via
lagrange extrapolation

1 + log slicing, minimal-distortion
driver shift

Interpatch effects remain well
below FD accuracy

Eventual problems due to
classical grid stretching

 0

 50

 100

 150

 200

 250

 300

 350

-0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

γ̃zz on the z-axis.



SUMMARY

For puncture data, use of higher resolution is leading to a
systematic understanding of trajectories in the last orbit for
such BHs (see talk by Diener).

We have the same techniques to thin sandwich data, such
as that generated by Grandclement et al.

Details of the gauge condition can have an important effect
on the accuracy of the evolution, and thus the physical
interpretation.
Multipatch techniques are making good progress evolving
spacetimes

Nonlinear distorted black holes without interpatch instability.
Still need work on gauges.



End.
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